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Abstract and Introduction 

Abstract 

In the last decade, competitive sports have taken on a whole new meaning, where intensity has increased together with 
the incidence of injuries to the athletes. Therefore, there is a strong need to develop better and faster treatments that 
allow the injured athlete to return to competition faster than with the normal course of rehabilitation, with a low risk of 
re-injury. Hyperbaric therapies are methods used to treat diseases or injuries using pressures higher than local 
atmospheric pressure inside a hyperbaric chamber. Within hyperbaric therapies, hyperbaric oxygen therapy (HBO) is 
the administration of pure oxygen (100%) at pressures greater than atmospheric pressure, i.e. more than 1 atmosphere 
absolute (ATA), for therapeutic reasons. The application of HBO for the treatment of sports injuries has recently been 
suggested in the scientific literature as a modality of therapy either as a primary or an adjunct treatment. Although 
results have proven to be promising in terms of using HBO as a treatment modality in sports-related injuries, these 
studies have been limited due to the small sample size, lack of blinding and randomization problems. HBO seems to be 
promising in the recovery of injuries for high-performance athletes; however, there is a need for larger samples, 
randomized, controlled, double-blinded clinical trials combined with studies using animal models so that its effects and 
mechanisms can be identified to confirm that it is a safe and effective therapy for the treatment of sports injuries. 

Introduction 

In the last decade, competitive sports have taken on a whole new meaning, where intensity has increased together with 
the incidence of injuries to the athletes. These sport injuries, ranging from broken bones to disrupted muscles, tendons 
and ligaments, may be a result of acute impact forces in contact sports or the everyday rigors of training and 
conditioning [Babul et al. 2003]. 

Therefore, a need has emerged to discover the best and fastest treatments that will allow the injured athlete to return to 
competition faster than the normal course of rehabilitation, with a low risk of re-injury. 

Hyperbaric oxygen therapy (HBO) is the therapeutic administration of 100% oxygen at pressures higher than 1 absolute 
atmosphere (ATA). It is administered by placing the patient in a multiplace or in a monoplace (one man) chamber and 
typically the vessels are pressurized to 1.5–3.0 ATA for periods between 60 and 120 minutes once or twice a day 
[Bennett et al. 2005a]. In the monoplace chamber the patient breathes the oxygen directly from the chamber but in the 
multiplace chamber this is done through a mask. At 2.0 ATA, the blood oxygen content is increased 2.5% and 
sufficient oxygen becomes dissolved in plasma to meet tissue needs in the absence of haemoglobin-bound oxygen, 
increasing tissue oxygen tensions 10-fold (1000%) [Staples and Clement, 1996]. HBO is remarkably free of untoward 
side effects. Complications such as oxygen toxicity, middle ear barotrauma and confinement anxiety are well controlled 
with appropriate pre-exposure orientations [Mekjavic et al. 2000]. 

HBO has been used empirically in the past, but today information exists for its rational application. This review aims to 
analyse the contribution of HBO in the rehabilitation of the different sports injuries. 

 



 
 
Hyperbaric Oxygen Therapy 

Hyperbaric therapies are methods used to treat diseases or injuries using pressures higher than local atmospheric 
pressure inside a hyperbaric chamber. Within hyperbaric therapies, HBO is the administration of pure oxygen (100%) 
at pressures greater than atmospheric pressure, i.e. more than 1 ATA, for therapeutic reasons [Albuquerque e Sousa, 
2007]. 

In order to be able to perform HBO, special facilities are required, with the capacity for withstanding pressures higher 
than 1 ATA, known as hyperbaric chambers, where patients breathe 100% oxygen [Fernandes, 2009]. 

In the case of single monoplace chambers (with a capacity for only one person) the oxygen is inhaled directly from the 
chambers' environment [Fernandes, 2009]. Although much less expensive to install and support, they have the major 
disadvantage of not being possible to access the patient during treatment. It is possible to monitor blood pressure, 
arterial waveform and electrocardiogram noninvasively, and to provide intravenous medications and fluids. Mechanical 
ventilation is possible if chambers are equipped appropriately, although it is not possible to suction patients during 
treatment. Mechanical ventilation in the monoplace chamber is provided by a modified pressure-cycled ventilator 
outside of the chamber [Sheridan and Shank, 1999]. 

In multiplace chambers, the internal atmosphere is room air compressed up to 6 ATA. Attendants in this environment 
breathe compressed air, accruing a nitrogen load in their soft tissues, in the same way as a scuba diver breathing 
compressed air. These attendants need to decompress to avoid the decompression illness by using more complex 
decompression procedures when the treatment tables are more extended (e.g. Navy tables). The patients, on the other 
hand, are breathing oxygen while at pressure. This oxygen can be administered via face mask, a hood or endotracheal 
tube. The advantage of such a chamber is that the patient can be attended to during treatment, but the installation and 
support costs are very high. These high costs preclude the widespread use of multiplace chambers [Sheridan and Shank, 
1999]. 

Biochemical, Cellular and Physiological Effects of HBO 

The level of consumption of O2 by a given tissue, on the local blood stream, and the relative distance of the zone 
considered from the nearest arteriole and capillary determines the O2 tension in this tissue. Indeed, O2 consumption 
causes oxygen partial pressure (pO2) to fall rapidly between arterioles and vennules. This emphasizes the fact that in 
tissues there is a distribution of oxygen tensions according to a gradient. This also occurs at the cell level such as in the 
mitochondrion, the terminal place of oxygen consumption, where O2 concentrations range from 1.5 to 3µM [Mathieu, 
2006]. 

Before reaching the sites of utilization within the cell such as the perioxome, mitochondria and endoplasmic reticulum, 
the oxygen moves down a pressure gradient from inspired to alveolar gas, arterial blood, the capillary bed, across the 
interstitial and intercellular fluid. Under normobaric conditions, the gradient of pO2 known as the 'oxygen cascade' 
starts at 21.2 kPa (159mmHg) and ends up at 0.5–3 kPa (3.8–22.5mmHg) depending on the target tissue [Mathieu, 
2006]. The arterial oxygen tension (PaO2) is approximately 90mmHg and the tissue oxygen tension (PtO2) is 
approximately 55mmHg [Sheridan and Shank, 1999]. These values are markedly increased by breathing pure oxygen at 
greater than atmospheric pressure. 

HBO is limited by toxic oxygen effects to a maximum pressure of 300 kPa (3 bar). Partial pressure of carbon dioxide in 
the arterial blood (PaCO2), water vapour pressure and respiratory quotient (RQ) do not vary significantly between 100 
and 300 kPa (1 and 3 bar). Thus, for example, the inhalation of 100% oxygen at 202.6 kPa (2 ATA) provides an 



alveolar PO2 of 1423mmHg and, consequently, the alveolar oxygen passes the alveolar–capillary space and diffuses 
into the venous pulmonary capillary bed according to Fick's laws of diffusion [Mathieu, 2006]. 

Hyperoxya and Hyperoxygenation 

Oxygen is transported by blood in two ways: chemically, bound to haemoglobin, and physically, dissolved in plasma. 
During normal breathing in the environment we live in, haemoglobin has an oxygen saturation of 97%, representing a 
total oxygen content of about 19.5 ml O2/100 ml of blood (or 19.5 vol%), because 1 g of 100% saturated haemoglobin 
carries 1.34 ml oxygen. In these conditions the amount of oxygen dissolved in plasma is 0.32 vol%, giving a total of 
19.82 vol% oxygen. When we offer 85% oxygen through a Hudson mask or endotracheal intubation the oxygen content 
can reach values up to 22.2 vol% [Jain, 2004]. 

The main effect of HBO is hyperoxia. During this therapy, oxygen is dissolved physically in the blood plasma. At an 
ambient pressure of 2.8 ATA and breathing 100% oxygen, the alveolar oxygen tension (PAO2) is approximately 
2180mmHg, the PaO2 is at least 1800mmHg and the tissue concentration (PtO2) is at least 500 mmHg. The oxygen 
content of blood is approximately ([1.34×Hbg×SaO2]+[0.0031×PaO2]), where Hbg is serum haemoglobin 
concentration and SaO2 is arterial oxygen saturation [Sheridan and Shank, 1999]. At a PaO2 of 1800mmHg, the 
dissolved fraction of oxygen in plasma (0.0031×PaO2) is approximately 6 vol%, which means that 6 ml of oxygen will 
be physically dissolved in 100 ml of plasma, reaching a total volume of oxygen in the circulating blood volume equal 
to 26.9 vol%, equivalent to basic oxygen metabolic needs, and the paO2 in the arteries can reach 2000mmHg. With a 
normal lung function and tissue perfusion, a partial pressure of oxygen in the blood (pO2)>1000mmHg could be 
reached [Mayer et al. 2004]. Breathing pure oxygen at 2 ATA, the oxygen content in plasma is 10 times higher than 
when breathing air at sea level. Under normal conditions the pO2 is 95 mmHg; under conditions of a hyperbaric 
chamber, the pO2 can reach values greater than 2000mmHg [Jain, 2004]. Consequently, during HBO, Hbg is also fully 
saturated on the venous side, and the result is an increased oxygen tension throughout the vascular bed. Since diffusion 
is driven by a difference in tension, oxygen will be forced further out into tissues from the vascular bed [Mortensen, 
2008] and diffuses to areas inaccessible to molecules of this gas when transported by haemoglobin [Albuquerque e 
Sousa, 2007]. 

After removal from the hyperbaric oxygen environment, the PaO2 normalizes in minutes, but the PtO2 may remain 
elevated for a variable period. The rate of normalization of PtO2 has not been clearly described, but is likely measured 
in minutes to a few hours, depending on tissue perfusion [Sheridan and Shank, 1999]. 

The physiological effects of HBO include shortterm effects such as vasoconstriction and enhanced oxygen delivery, 
reduction of oedema, phagocytosis activation and also an anti-inflammatory effect (enhanced leukocyte function). 
Neovascularization (angiogenesis in hypoxic soft tissues), osteoneogenesis as well as stimulation of collagen 
production by fibroblasts are known long-term effects. This is beneficial for wound healing and recovery from 
radiation injury [Mayer et al. 2004; Sheridan and Shank, 1999]. 

Physiological and Therapeutic Effects of HBO 

In normal tissues, the primary action of oxygen is to cause general vasoconstriction (especially in the kidneys, skeletal 
muscle, brain and skin), which elicits a 'Robin Hood effect' through a reduction of blood flow to well-oxygenated tissue 
[Mortensen, 2008]. HBO not only provides a significant increase in oxygen availability at the tissue level, as selective 
hyperoxic and not hypoxic vasoconstriction, occurring predominantly at the level of healthy tissues, with reduced blood 
volume and redistribution oedema for peripheral tissue hypoxia, which can raise the anti-ischemic and antihypoxic 
effects to extremities due to this physiological mechanism [Albuquerque e Sousa, 2007]. HBO reduces oedema, partly 
because of vasoconstriction, partly due to improved homeostasis mechanisms. A high gradient of oxygen is a potent 



stimuli for angioneogenesis, which has an important contribution in the stimulation of reparative and regenerative 
processes in some diseases [Mortensen, 2008]. 

Also many cell and tissue functions are dependent on oxygen. Of special interest are leukocytes ability to kill bacteria, 
cell replication, collagen formation, and mechanisms of homeostasis, such as active membrane transport, e.g. the 
sodium–potassium pump. HBO has the effect of inhibiting leukocyte adhesion to the endothelium, diminishing tissue 
damage, which enhances leukocyte motility and improves microcirculation [Mortensen, 2008]. This occurs when the 
presence of gaseous bubbles in the venous vessels blocks the flow and induces hypoxia which causes endothelial stress 
followed by the release of nitric oxide (NO) which reacts with superoxide anions to form peroxynitrine. This, in turn, 
provokes oxidative perivascular stress and leads to the activation of leukocytes and their adhesion to the endothelium 
[Antonelli et al. 2009]. 

Another important factor is hypoxia. Hypoxia is the major factor stimulating angiogenesis. However, deposition of 
collagen is increased by hyperoxygenation, and it is the collagen matrix that provides support for the growth of new 
capillary bed. Two-hour daily treatments with HBO are apparently responsible for stimulating the oxygen in the 
synthesis of collagen, the remaining 22 h of real or relative hypoxia, in which the patient is not subjected to HBO, 
provide the stimuli for angiogenesis. Thus, the alternation of states of hypoxia and hyperoxia, observed in patients 
during treatment with intermittent HBO, is responsible for maximum stimulation of fibroblast activity in ischemic 
tissues, producing the development of the matrix of collagen, essential for neovascularization [Jain, 2004]. 

The presence of oxygen has the advantage of not only promoting an environment less hospitable to anaerobes, but also 
speeds the process of wound healing, whether from being required for the production of collagen matrix and 
subsequent angiogenesis, from the presence and beneficial effects of reactive oxygen species (ROS), or from yet 
undetermined means [Kunnavatana et al. 2005]. 

Dimitrijevich and colleagues studied the effect of HBO on human skin cells in culture and in human dermal and skin 
equivalents [Dimitrijevich et al. 1999]. In that study, normal human dermal fibroblasts, keratinocytes, melanocytes, 
dermal equivalents and skin equivalents were exposed to HBO at pressures up to 3 ATA for up to 10 consecutive daily 
treatments lasting 90 minutes each. An increase in fibroblast proliferation, collagen production and keratinocyte 
differentiation was observed at 1 and 2.5 ATA of HBO, but no benefit at 3 ATA. Kang and colleagues reported that 
HBO treatment up to 2.0 ATA enhances proliferation and autocrine growth factor production of normal human 
fibroblasts grown in a serum-free culture environment, but showed no benefit beyond or below 2 ATA of HBO [Kang 
et al. 2004]. Therefore, a delicate balance between having enough and too much oxygen and/or atmospheric pressure is 
needed for fibroblast growth [Kunnavatana et al. 2005]. 

Another important feature to take into account is the potential antimicrobial effect of HBO. HBO, by reversing tissue 
hypoxia and cellular dysfunction, restores this defence and also increases the phagocytosis of some bacteria by working 
synergistically with antibiotics, and inhibiting the growth of a number of anaerobic and aerobic organisms at wound 
sites [Mader et al. 1980]. There is evidence that hyperbaric oxygen is bactericidal for Clostridium perfringens, in 
addition to promoting a definitive inhibitory effect on the growth of toxins in most aerobic and microaerophilic 
microorganisms. The action of HBO on anaerobes is based on the production of free radicals such as superoxide, 
dismutase, catalase and peroxidase. More than 20 different clostridial exotoxins have been identified, and the most 
prevalent is alphatoxine (phospholipase C), which is haemolytic, tissue necrotizing and lethal. Other toxins, acting in 
synergy, promote anaemia, jaundice, renal failure, cardiotoxicity and brain dysfunction. Thetatoxine is responsible for 
vascular injury and consequent acceleration of tissue necrosis. HBO blocks the production of alphatoxine and 
thetatoxine and inhibits bacterial growth [Jain, 2004]. 

 



 
 
 
HBO Applications in Sports Medicine 

The healing of a sports injury has its natural recovery, and follows a fairly constant pattern irrespective of the 
underlying cause. Three phases have been identified in this process: the inflammatory phase, the proliferative phase and 
the remodelling phase. Oxygen has an important role in each of these phases [Ishii et al. 2005]. 

In the inflammatory phase, the hypoxia-induced factor-1α, which promotes, for example, the glycolytic system, 
vascularization and angiogenesis, has been shown to be important. However, if the oxygen supply could be controlled 
without promoting blood flow, the blood vessel permeability could be controlled to reduce swelling and consequently 
sharp pain. 

In the proliferative phase, in musculoskeletal tissues (except cartilage), the oxygen supply to the injured area is 
gradually raised and is essential for the synthesis of extracellular matrix components such as fibronectin and 
proteoglycan. 

In the remodelling phase, tissue is slowly replaced over many hours using the oxygen supply provided by the blood 
vessel already built into the organization of the musculoskeletal system, with the exception of the cartilage. If the 
damage is small, the tissue is recoverable with nearly perfect organization but, if the extent of the damage is large, a 
scar (consisting mainly of collagen) may replace tissue. Consequently, depending on the injury, this collagen will 
become deficiently hard or loose in the case of muscle or ligament repair, respectively. 

The application of HBO for the treatment of sports injuries has recently been suggested in the scientific literature as a 
therapy modality: a primary or an adjunct treatment [Babul et al. 2003]. Although results have proven to be promising 
in terms of using HBO as a treatment modality in sports-related injuries, these studies have been limited due to the 
small sample sizes, lack of blinding and randomization problems [Babul and Rhodes, 2000]. 

Even fewer studies referring to the use of HBO in high level athletes can be found in the literature. Ishii and colleagues 
reported the use of HBO as a recovery method for muscular fatigue during the Nagano Winter Olympics [Ishii et al. 
2005]. In this experiment seven Olympic athletes received HBO treatment for 30–40 minutes at 1.3 ATA with a 
maximum of six treatments per athlete and an average of two. It was found that all athletes benefited from the HBO 
treatment presenting faster recovery rates. These results are concordant with those obtained by Fischer and colleagues 
and Haapaniemi and colleagues that suggested that lactic acid and ammonia were removed faster with HBO treatment 
leading to shorter recovery periods [Haapaniemi et al. 1995; Fischer et al. 1988]. 

Also in our experience at the Matosinhos Hyperbaric Unit several situations, namely fractures and ligament injuries, 
have proved to benefit from faster recovery times when HBO treatments were applied to the athletes. 

Muscle Injuries 

Muscle injury presents a challenging problem in traumatology and commonly occurs in sports. The injury can occur as 
a consequence of a direct mechanical deformation (as contusions, lacerations and strains) or due to indirect causes 
(such as ischemia and neurological damage) [Li et al. 2001]. These indirect injuries can be either complete or 
incomplete [Petersen and Hölmich, 2005]. 

In sport events in the United States, the incidence of all injuries ranges from 10% to 55%. The majority of muscle 
injuries (more than 90%) are caused either by excessive strain or by contusions of the muscle [Järvinen et al. 2000]. A 



muscle suffers a contusion when it is subjected to a sudden, heavy compressive force, such as a direct blow. In strains, 
however, the muscle is subjected to an excessive tensile force leading to the overstraining of the myofibres and, 
consequently, to their rupture near the myotendinous junction [Järvinen et al. 2007]. 

Muscle injuries represent a continuum from mild muscle cramp to complete muscle rupture, and in between is partial 
strain injury and delayed onset muscle soreness (DOMS) [Petersen and Hölmich, 2005]. DOMS usually occurs 
following unaccustomed physical activity and is accompanied by a sensation of discomfort within the skeletal muscle 
experienced by the novice or elite athlete. The intensity of discomfort increases within the first 24 hours following 
cessation of exercise, peaks between 24 and 72 hours, subsides and eventually disappears by 5–7 days postexercise 
[Cervaens and Barata, 2009]. 

Oriani and colleagues first suggested that HBO might accelerate the rate of recovery from injuries suffered in sports 
[Oriani et al. 1982]. However, the first clinical report appeared only in 1993 where results suggested a 55% reduction 
in lost days to injury, in professional soccer players in Scotland suffering from a variety of injuries following the 
application of HBO. These values were based on a physiotherapist's estimation of the time course for the injury versus 
the actual number of days lost with routine therapy and HBO treatment sessions [James et al. 1993]. Although 
promising, this study needed a control group and required a greater homogeneity of injuries as suggested by Babul and 
colleagues [Babul et al. 2000]. 

DOMS. DOMS describes a phenomenon of muscle pain, muscle soreness or muscle stiffness that is generally felt 12–
48 hours after exercise, particularly at the beginning of a new exercise program, after a change in sporting activities, or 
after a dramatic increase in the duration or intensity of exercise. 

Staples and colleagues in an animal study, used a downhill running model to induce damage, and observed significant 
changes in the myeloperoxidase levels in rats treated with hyperbaric oxygen compared with untreated rats [Staples et 
al. 1995]. It was suggested that hyperbaric oxygen could have an inhibitory effect on the inflammatory process or the 
ability to actually modulate the injury to the tissue. 

In 1999, the same group conducted a randomized, controlled, double-blind, prospective study to determine whether 
intermittent exposures to hyperbaric oxygen enhanced recovery from DOMS of the quadriceps by using 66 untrained 
men between the ages of 18 and 35 years [Staples et al. 1999]. After the induction of muscle soreness, the subjects 
were treated in a hyperbaric chamber over a 5-day period in two phases: the first phase with four groups (control, 
hyperbaric oxygen treatment, delayed treatment and sham treatment); and in the second phase three groups (3 days of 
treatment, 5 days of treatment and sham treatment). The hyperbaric exposures involved 100% oxygen for 1 hour at 2.0 
ATA. The sham treatments involved 21% oxygen for 1 hour at 1.2 ATA. In phase 1, a significant difference in 
recovery of eccentric torque was noted in the treatment group compared with the other groups as well as in phase 2, 
where there was also a significant recovery of eccentric torque for the 5-day treatment group compared with the sham 
group, immediately after exercise and up to 96 hours after exercise. However, there was no significant difference in 
pain in either phase. The results suggested that treatment with hyperbaric oxygen may enhance recovery of eccentric 
torque of the quadriceps muscle from DOMS. This study had a complex protocol and the experimental design was not 
entirely clear (exclusion of some participants and the allocation of groups was not clarified), which makes 
interpretation difficult [Bennett et al. 2005a]. 

Mekjavic and colleagues did not find any recovery from DOMS after HBO. They studied 24 healthy male subjects who 
were randomly assigned to a placebo group or a HBO group after being induced with DOMS in their right elbow 
flexors [Mekjavic et al. 2000]. The HBO group was exposed to 100% oxygen at 2.5 ATA and the sham group to 8% 
oxygen at 2.5 ATA both for 1 hour per day and during 7 days. Over the period of 10 days there was no difference in the 
rate of recovery of muscle strength between the two groups or the perceived pain. Although this was a randomized, 
double-blind trial, this was a small study [Bennett et al. 2005a]. 



Harrison and colleagues also studied the effect of HBO in 21 healthy male volunteers after inducing DOMS in the 
elbow flexors [Harrison et al. 2001]. The subjects were assigned to three groups: control, immediate HBO and delayed 
HBO. These last two groups were exposed to 2.5 ATA, for 100 min with three periods of 30 min at 100% oxygen 
intercalated with 5 min with 20.93% oxygen between them. The first group began the treatments with HBO after 2 
hours and the second group 24 hours postexercise and both were administered daily for 4 days. The delayed HBO 
group were also given a sham treatment with HBO at day 0 during the same time as the following days' treatments but 
with 20.93% oxygen at a minimal pressure. The control group had no specific therapy. There were no significant 
differences between groups in serum creatine kinase (CK) levels, isometric strength, swelling or pain, which suggested 
that HBO was not effective on DOMS. This study also presented limitations such as a small sample size and just partial 
blinding [Bennett et al. 2005a]. 

Webster and colleagues wanted to determine whether HBO accelerated recovery from exercise-induced muscle damage 
in 12 healthy male volunteers that underwent strenuous eccentric exercise of the gastrocnemius muscle [Webster et al. 
2002]. The subjects were randomly assigned to two groups, where the first was the sham group who received HBO 
with atmospheric air at 1.3 ATA, and the second with 100% oxygen with 2.5 ATA, both for 60 minutes. The first 
treatment was 3–4 hours after damage followed by treatments after 24 and 48 hours. There was little evidence in the 
recovery measured data, highlighting a faster recovery in the HBO group in the isometric torque, pain sensation and 
unpleasantness. However, it was a small study with multiple outcomes and some data were not used due to difficulties 
in interpretation [Bennett et al. 2005a]. 

Babul and colleagues also conducted a randomized, double-blind study in order to find out whether HBO accelerated 
the rate of recovery from DOMS in the quadriceps muscle [Babul et al. 2003]. This exercise-induced injury was 
produced in 16 sedentary female students that were assigned into two groups: control and HBO. The first was 
submitted to 21% oxygen at 1.2 ATA, and the second to 100% oxygen at 2.0 ATA for 60 minutes at 4, 24, 48 and 72 
hours postinjury. There were no significant differences between the groups in the measured outcomes. However, this 
was also a small study with multiple outcomes, with a complex experimental design with two distinct phases with 
somewhat different therapy arms [Bennett et al. 2005a]. 

Germain and colleagues had the same objective as the previous study but this time the sample had 10 female and 6 
male subjects that were randomly assigned into two groups [Germain et al. 2003]: the control group that did not 
undergo any treatment and the HBO group that was exposed to 95% oxygen at 2.5 ATA during 100 minutes for five 
sessions. There were no significant differences between the groups which lead to the conclusion that HBO did not 
accelerate the rate of recovery of DOMS in the quadriceps. Once again, this was a very small and unblinded study that 
presented multiple outcomes [Bennett et al. 2005a]. 

Muscle Stretch Injury. In 1998, Best and colleagues wanted to analyse whether HBO improved functional and 
morphologic recovery after a controlled induced muscle stretch in the tibialis anterior muscle–tendon unit [Best et al. 
1998]. They used a rabbit model of injury and the treatment group was submitted to a 5-day treatment with 95% 
oxygen at 2.5 ATA for 60 minutes. Then, after 7 days, this group was compared with a control group that did not 
undergo HBO treatment. The results suggested that HBO administration may play a role in accelerating recovery after 
acute muscle stretch injury. 

Ischemia. Another muscle injury that is often a consequence of trauma is ischemia. Normally it is accompanied by 
anaerobic glycolysis, the formation of lactate and depletion of high-energy phosphates within the extracellular fluid of 
the affected skeletal muscle tissue. When ischemia is prolonged it can result in loss of cellular homeostasis, disruption 
of ion gradients and breakdown of membrane phospholipids. The activation of neutrophils, the production of oxygen 
radicals and the release of vasoactive factors, during reperfusion, may cause further damage to local and remote tissues. 
However, the mechanisms of ischemia–reperfusion-induced muscle injury are not fully understood [Bosco et al. 2007]. 



These authors aimed to see the effects of HBO in the skeletal muscle of rats after ischemia-induced injury and found 
that HBO treatment attenuated significantly the increase of lactate and glycerol levels caused by ischemia, without 
affecting glucose concentration, and modulating antioxidant enzyme activity in the postischemic skeletal muscle. 

A similar study was performed in 1996 [Haapaniemi et al. 1996] in which the authors concluded that HBO had positive 
aspects for at least 48 hours after severe injury, by raising the levels of high-energy phosphate compounds, which 
indicated a stimulation of aerobic oxidation in the mitochondria. This maintains the transport of ions and molecules 
across the cell membrane and optimizes the possibility of preserving the muscle cell structure. 

Gregorevic and colleagues induced muscle degeneration in rats in order to see whether HBO hastens the functional 
recovery and myofiber regeneration of the skeletal muscle [Gregorevic et al. 2000]. The results of this study 
demonstrated that the mechanism of improved functional capacity is not associated with the reestablishment of a 
previously compromised blood supply or with the repair of associated nerve components, as seen in ischemia, but with 
the pressure of oxygen inspired with a crucial role in improving the maximum force-producing capacity of the 
regenerating muscle fibres after this myotoxic injury. In addition, there were better results following 14 days of HBO 
treatment at 3 ATA than at 2 ATA. 

Ankle Sprains 

In 1995 a study conducted at the Temple University suggested that patients treated with HBO returned approximately 
30% faster than the control group after ankle sprain. The authors stated, however, that there was a large variability in 
this study design due to the difficulty in quantifying the severity of sprains [Staples and Clement, 1996]. 

Interestingly, Borromeo and colleagues, in a randomized, double-blinded study, observed in 32 patients who had acute 
ankle sprains the effects of HBO in its rehabilitation [Borromeo et al. 1997]. The HBO group was submitted to 100% 
oxygen at 2 ATA for 90 minutes for the first session and 60 minutes for the other two. The placebo group was exposed 
to ambient air, at 1.1 ATA for 90 minutes, both groups for three sessions over 7 days. The HBO group had an 
improvement in joint function. However, there were no significant differences between groups in the subjective pain, 
oedema, passive or active range of motion or time to recovery. This study included an average delay of 34 hours from 
the time of injury to treatment, and it had short treatment duration [Bennett et al. 2005a]. 

Medical Collateral Ligament 

Horn and colleagues in an animal study surgically lacerated medial collateral ligament of 48 rats [Horn et al. 1999]. 
Half were controls without intervention and the other half were exposed to HBO at 2.8 ATA for 1.5 hours a day over 5 
days. Six rats from each group were euthanized at 2, 4, 6 and 8 weeks and at 4 weeks a statistically greater force was 
required to cause failure of the previously divided ligaments for those exposed to HBO than in the control group. After 
4 weeks, an interesting contribution from HBO could be seen in that it promoted the return of normal stiffness of the 
ligament. 

Ishii and colleagues induced ligament lacerations in the right limb of 44 rats and divided them into four groups [Ishii et 
al. 2002]: control group, where animals breathed room air at 1 ATA for 60 min; HBO treatment at 1.5 ATA for 30 min 
once a day; HBO treatment at 2 ATA for 30 min once a day; and 2 ATA for 60 min once a day. After 14 days 
postinjury, of the three exposures the last group was more effective in promoting healing by enhancing extracellular 
matrix deposition as measured by collagen synthesis. 

Mashitori and colleagues removed a 2-mm segment of the medial collateral ligament in 76 rats [Mashitori et al. 2004]. 
Half of these rats were exposed to HBO at 2.5 ATA for 2 hours for 5 days per week and the remaining rats were 
exposed to room air. The authors observed that HBO promotes scar tissue formation by increasing type I procollagen 
gene expression, at 7 and 14 days after the injury, which contribute for the improvement of their tensile properties. 



In a randomized, controlled and double-blind study, Soolsma examined the effect of HBO at the recovery of a grade II 
medial ligament of the knee presented in patients within 72 hours of injury. After one group was exposed to HBO at 2 
ATA for 1 hour and the control group at 1.2 ATA, room air, for 1 hour, both groups for 10 sessions, the data suggested 
that, at 6 weeks, HBO had positive effects on pain and functional outcomes, such as decreased volume of oedema, a 
better range of motion and maximum flexion improvement, compared with the sham group [Soolsma, 1996]. 

Anterior Cruciate Ligament 

Yeh and colleagues used an animal model to investigate the effects of HBO on neovascularization at the tendon–bone 
junction, collagen fibres of the tendon graft and the tendon graft–bony interface which is incorporated into the osseous 
tunnel [Yeh et al. 2007]. The authors used 40 rabbits that were divided into two groups: the control group that was 
maintained in cages at normal air and the HBO group that was exposed to 100% oxygen at 2.5 ATA for 2 hours, for 5 
days. The authors found that the HBO group had significantly increased the amount of trabecular bone around the 
tendon graft, increasing its incorporation to the bone and therefore increasing the tensile loading strength of the tendon 
graft. They assumed that HBO contributes to the angiogenesis of blood vessels, improving the blood supply which 
leads to the observed outcomes. 

Takeyama and colleagues studied the effects of HBO on gene expressions of procollagen and tissue inhibitor of 
metalloproteinase (TIMPS) in injured anterior cruciate ligaments [Takeyama et al. 2007]. After surgical injury animals 
were divided into a control group and a group that was submitted to HBO, 2.5 ATA for 2 hours, for 5 days. It was 
found that even though none of the lacerated anterior cruciate ligaments (ACLs) united macroscopically, there was an 
increase of the gene expression of type I procollagen and of TIMPS 1 and 2 for the group treated with HBO. These 
results indicate that HBO enhances structural protein synthesis and inhibits degradative processes. Consequently using 
HBO as an adjunctive therapy after primary repair of the injured ACL is likely to increase success, a situation that is 
confirmed by the British Medical Journal Evidence Center [Minhas, 2010]. 

Fractures 

Classical treatment with osteosynthesis and bone grafting is not always successful and the attempt to heal nonunion and 
complicated fractures, where the likelihood of infection is increased, is a challenge. 

A Cochrane review [Bennett et al. 2005b] stated that there is not sufficient evidence to support hyperbaric oxygenation 
for the treatment of promoting fracture healing or nonunion fracture as no randomized evidence was found. During the 
last 10 years this issue has not been the subject of many studies. 

Okubo and colleagues studied a rat model in which recombinant human bone morphogenetic protein-2 was implanted 
in the form of lyophilized discs, the influence of HBO [Okubo et al. 2001]. The group treated with HBO, exposed to 2 
ATA for 60 min daily, had significantly increased new bone formation compared with the control group and the 
cartilage was present at the outer edge of the implanted material after 7 days. 

Komurcu and colleagues reviewed retrospectively 14 cases of infected tibial nonunion that were treated successfully 
[Komurcu et al. 2002]. Management included aggressive debridement and correction of defects by corticotomy and 
internal bone transport. The infection occurred in two patients after the operation which was successfully resolved after 
20–30 sessions of HBO. 

Muhonen and colleagues aimed to study, in a rabbit mandibular distraction osteogenesis model, the osteogenic and 
angiogenic response to irradiation and HBO [Muhonen et al. 2004]. One group was exposed to 18 sessions of HBO 
until the operation that was performed 1 month after irradiation. The second group did not receive HBO and the 
controls underwent surgery receiving neither irradiation nor HBO. The authors concluded that previous irradiation 



suppresses osteoblastic activity and HBO changes the pattern of bone-forming activity towards that of nonirradiated 
bone. 

Wang and colleagues, in a rabbit model, were able to demonstrate that distraction segments of animals treated with 
HBO had increased bone mineral density and superior mechanical properties comparing to the controls and yields 
better results when applied during the early stage of the tibial healing process [Wang et al. 2005]. 

Conclusion 

In the various studies, the location of the injury seemed to have an influence on the effectiveness of treatment. After 
being exposed to HBO, for example, injuries at the muscle belly seem to have less benefit than areas of reduced 
perfusion such as muscle–tendon junctions and ligaments. 

With regards to HBO treatment, it is still necessary to determine the optimal conditions for these orthopaedic 
indications, such as the atmosphere pressure, the duration of sessions, the frequency of sessions and the duration of 
treatment. Differences in the magnitude of the injury and in the time between injury and treatment may also affect 
outcomes. 

Injuries studies involving bones, muscles and ligaments with HBO treatment seem promising. However, they are 
comparatively scarce and the quality of evidence for the efficacy of HBO is low. Orthopaedic indications for HBO will 
become better defined with perfection of the techniques for direct measurement of tissue oxygen tensions and 
intramuscular compartment pressures. Despite evidence of interesting results when treating high-performance athletes, 
these treatments are multifactorial and are rarely published. Therefore, there is a need for larger samples, randomized, 
controlled, double-blind clinical trials of human (mainly athletes) and animal models in order to identify its effects and 
mechanisms to determine whether it is a safe and effective therapy for sports injuries treatments. 

 


